
Evaluating Web Application and Server Security: A
Hands-On Test with Wapiti and Nikto

Aidan Ingram

University of Kansas, Department of Electrical Engineering and Computer Science

Abstract

The purpose of this report is to explore the functionality of two vulnerability scanner
tools, Nikto and Wapiti, which have not been covered in EECS 465. This report focuses
on web application and server vulnerabilities, with a detailed analysis of the tools’ inner
workings, technical mechanisms, and effectiveness in identifying vulnerabilities. Through
hands-on testing, this report also aims to provide insights into Nikto and Wapiti’s capa-
bilities and limitations in detecting web server and application vulnerabilities.

Contents

1 Introduction 1
1.1 Web Security - Importance . . 1

2 Motivation 2

3 Tools and Methodology 2
3.1 Nikto Web Scanner 2
3.2 Wapiti Web Scanner 3
3.3 Methodology 3

4 Testing and Evaluation 4
4.1 Nikto Testing Process 4
4.2 Wapiti Testing Process 4
4.3 Test Environment and Docu-

mentation 5

5 Hands-On Demo (Figures/Data) 5
5.1 Nikto Testing Results 5
5.2 Verification of Findings 6
5.3 Wapiti Testing Results 7
5.4 Verification of Findings 8

6 Results and Discussion 9

7 Conclusion 9

1 Introduction

Web applications are prime targets for attack-
ers due to their exposure on the internet and

the sensitive data they handle. This report ex-
plores two vulnerability scanner tools, Nikto
and Wapiti, used to detect vulnerabilities in
web applications and servers. These tools help
identify issues like outdated software, cross-
site scripting (XSS), and SQL injection, which
are critical to address for maintaining web se-
curity.

My report evaluates how these tools perform
in practice, and compare their usage. Using
isolated virtual machine setups with Metas-
ploitable andDamn Vulnerable Web Ap-
plication (DVWA), I will assess the tools’
effectiveness in detecting vulnerabilities.

1.1 Web Security - Importance

An attack on a vulnerability as simple as SQL
injection could cause the leakage of very sensi-
tive data, directly affecting users. Vulnerabil-
ity scanners like Nikto and Wapiti are essen-
tial tools in identifying and mitigating these
risks, enabling organizations to proactively
address security flaws and strengthen their de-
fenses. These tools help uncover weaknesses
that could be exploited, reducing the potential
impact of cyber threats. To further elaborate
on the necessity of this report, refer to section
2, the motivation.

Aidan Ingram
University of Kansas Web Vulnerability Scanner Assessment

2 Motivation

Web server and application vulnerabilities are of significant concern to modern cybersecurity
professionals, and rightfully so. With the ever-expanding nature of the internet and the vast
amounts of data being added to it, there is no sign of this growth slowing down. As reported
in recent studies on internet traffic volume [6], web traffic has been steadily increasing. Between
2010 and 2020, total traffic volume grew from 21.5 Exabytes to 222.4 Exabytes per month.
More notably, as of 2025, monthly internet traffic has reached 549.2 Exabytes.

This growth parallels Moore’s Law, which suggests that the number of transistors on a com-
puter chip doubles every two years. In a similar vein, some researchers [3] have noted that
internet traffic appears to be doubling at roughly the same rate. If this trend continues, we
(meaning society) may see internet traffic double every five years, posing significant challenges
for maintaining a secure, scalable internet infrastructure. While Moore’s Law itself may be
nearing an asymptote due to hardware limitations, the demand for increasing network capacity
and security remains high.

As cybersecurity professionals, it is our responsibility to safeguard the expanding internet. With
the web’s rapid growth, tools like Nikto and Wapiti are essential for minimizing security
exploits and maintaining a secure internet. Figure 1 illustrates this trend in internet traffic
growth.

Figure 1: Graph showing internet traffic volume

3 Tools and Methodology

This section outlines the tools used for vulnerability scanning (Nikto and Wapiti) and the
methodologies followed to identify and verify vulnerabilities within the target web applications.

3.1 Nikto Web Scanner

Nikto is an open-source web server scanner designed to detect various vulnerabilities such as
outdated software versions, misconfigurations, and missing HTTP security headers. It can be
hard to understand initially, so check out Figure 2. Nikto operates by:

2

Aidan Ingram
University of Kansas Web Vulnerability Scanner Assessment

• Fingerprinting Web Technologies: Nikto identifies the underlying web server and
application technologies through HTTP response analysis, allowing it to detect known
vulnerabilities in outdated software versions [7].

• Vulnerability Databases: The scanner compares responses against a database of known
vulnerabilities to detect issues like missing security headers (e.g., X-Frame-Options) and
outdated software.

• Automated Testing: Nikto performs automated tests for common vulnerabilities like
SQL injection, XSS, and directory traversal by sending crafted payloads to the server and
analyzing the responses [5] [10].

Figure 2: Overview of the Nikto scanning process. [2]

3.2 Wapiti Web Scanner

Wapiti is a dynamic application security scanner that focuses on detecting vulnerabilities in
web applications, particularly injection flaws, session management issues, and improper HTTP
header configurations. While not overwhelmingly so, Wapiti is consistently more simple than
Nikto (likely due to no server interaction). Key features include:

• Crawl and Scan: Wapiti first crawls the target application to map out its structure
before performing tests for common vulnerabilities such as SQL injection and XSS [1].

• Injection Testing: It uses a ”blind” testing method, injecting different payloads into
the application and analyzing the responses to identify vulnerabilities.

• Cookie and Session Analysis: Wapiti examines cookies for security issues like the
absence of the HttpOnly flag, which could lead to session hijacking [8], a very serious
cybercrime.

3.3 Methodology

The scanning process involved using Nikto and Wapiti in parallel to identify and verify vulner-
abilities within the target web applications.

3

Aidan Ingram
University of Kansas Web Vulnerability Scanner Assessment

• Nikto Scan: The web server was scanned using Nikto to detect outdated software and
missing security headers. The results provided insights into potential server-side vulner-
abilities, such as the absence of key HTTP headers.

• Wapiti Scan: Wapiti was used to assess the application for client-side vulnerabilities,
including injection flaws, improper cookie handling, and missing Content Security Policies
(CSP).

By using both tools, I ensured comprehensive coverage of both server-side and application-level
vulnerabilities.

4 Testing and Evaluation

For this study, I selected Nikto and Wapiti to assess the vulnerabilities of web servers and
applications. The testing environment consists of Metasploitable (a vulnerable web server)
and BWA (a vulnerable web application), both running within an isolated virtual machine
network on Kali Linux.

4.1 Nikto Testing Process

Nikto is a web server scanner designed to identify common vulnerabilities such as outdated
software, insecure HTTP methods, and misconfigurations [7].

• Configuration: Install Nikto on Kali using:

sudo apt-get install nikto

• Testing: Run a standard scan on Metasploitable’s web server:

nikto -h http://<Metasploitable_IP>

• Expected Results: Nikto will identify common web server issues such as outdated
software or insecure configurations.

• Verification: After scanning, I will verify the identified issues by checking the web server
configuration or exploiting the vulnerabilities presented in the tool’s usage.

4.2 Wapiti Testing Process

Wapiti is a web application scanner that targets vulnerabilities such as SQL Injection, XSS,
and file inclusion [1].

• Configuration: Install Wapiti on Kali using:

sudo apt-get install wapiti

• Testing: Run a scan on the DVWA application:

wapiti -u http://<BWA_IP>/dvwa/

4

Aidan Ingram
University of Kansas Web Vulnerability Scanner Assessment

• Expected Results: Wapiti will identify web application vulnerabilities such as SQL
Injection, XSS, and file inclusion.

• Verification: After scanning, I will verify the reported vulnerabilities by attempting to
exploit them or checking for evidence in the application code.

4.3 Test Environment and Documentation

Both tools are tested within an isolated virtual machine setup, refer to Figure 3 for proof. Test
results are documented by capturing screenshots of tool outputs, listing detected vulnerabili-
ties, and verifying findings through manual exploitation. This allows for an assessment of the
accuracy and effectiveness of both Nikto and Wapiti in identifying real-world vulnerabilities. I
have done this in the next section.

Figure 3: Proof my methodology is restricted to my environment.

5 Hands-On Demo (Figures/Data)

This section presents figures related to the running of Nikto and Wapiti in my environment.

5.1 Nikto Testing Results

The Nikto scan results from the Metasploitable web server identified the following critical
vulnerabilities, as can be seen in Figure 4:

5

Aidan Ingram
University of Kansas Web Vulnerability Scanner Assessment

• Outdated Software:

– Apache version: 2.2.8 (Outdated, current version is at least Apache 2.4.54).

– PHP version: 5.2.4-2ubuntu5.10 (Outdated, current version is at least PHP 8.1.5).

Impact: These outdated versions of Apache and PHP may contain known vulnerabilities
that have been fixed in later versions, such as authentication bypass [4].

• Missing HTTP Security Headers:

– X-Frame-Options header is not present (anti-clickjacking protection).

– X-Content-Type-Options header is not set (could allow MIME type confusion).

Impact: The absence of these headers can make the application vulnerable to clickjacking
and content-type spoofing attacks.

Figure 4: Nikto scanning output after tool use.

5.2 Verification of Findings

To verify the vulnerabilities reported by Nikto, the following actions were taken:

• Outdated Software:

– The Apache version was checked by running apache2 -v, confirming the version was
2.2.8.

– The PHP version was confirmed using php -v, which returned PHP 5.2.4-2ubuntu5.10.

• Missing HTTP Security Headers:

– The HTTP headers were examined using the following command:

6

Aidan Ingram
University of Kansas Web Vulnerability Scanner Assessment

curl -I http://192.168.56.101

The headers X-Frame-Options and X-Content-Type-Options were not present in
the response.

5.3 Wapiti Testing Results

The Wapiti scan results from the DVWA web application identified the following critical vul-
nerabilities (please note Figure’s 5 and 6 represent this information):

• Content Security Policy (CSP):

– CSP is not set on the web application.

Impact: This lack of CSP exposes the application to Cross-Site Scripting (XSS) and data
injection attacks [9].

• HTTP Secure Headers:

– Missing security headers: X-Frame-Options, X-XSS-Protection, X-Content-Type-Options,
and Strict-Transport-Security.

Impact: The absence of these headers leaves the application vulnerable to clickjacking,
XSS attacks, MIME type confusion, and man-in-the-middle attacks.

• HttpOnly Flag Cookie:

– The HttpOnly flag is not set on cookies (PHPSESSID, security).

Impact: Without the HttpOnly flag, client-side scripts can access cookies, potentially
leading to session hijacking.

Figure 5: Wapiti scanning output after tool use (Kali).

7

Aidan Ingram
University of Kansas Web Vulnerability Scanner Assessment

Figure 6: Wapiti report output in browser.

5.4 Verification of Findings

To verify the vulnerabilities reported by Wapiti, the following actions were taken:

• Content Security Policy (CSP):

– The response headers were checked using the command:

curl -I http://192.168.56.103/dvwa/

The response did not include the Content-Security-Policy header.

• HTTP Secure Headers:

– The security headers were verified using the same curl -I command, and none of the
missing headers (X-Frame-Options, X-XSS-Protection, X-Content-Type-Options,
Strict-Transport-Security) were found in the response.

• HttpOnly Flag Cookie:

– The cookies were inspected using the browser’s developer tools and the HttpOnly

flag was confirmed to be missing from the PHPSESSID and security cookies.

8

Aidan Ingram
University of Kansas Web Vulnerability Scanner Assessment

6 Results and Discussion

This section discusses the key findings from the Nikto and Wapiti scans, the implications of
these results, and proposes potential fixes.

Nikto Testing Results:
• Outdated Software: Apache 2.2.8
and PHP 5.2.4 are outdated, exposing
the server to known vulnerabilities.

• Missing HTTP Headers: Lack of
X-Frame-Options and X-Content-Type-
Options increases vulnerability to click-
jacking and MIME type spoofing.

Proposed Fixes:
• Update Software: Upgrade Apache
and PHP to the latest supported ver-
sions.

• Configure Security Headers: Add
necessary headers such as X-Frame-
Options and X-Content-Type-Options.

Wapiti Testing Results:
• Missing CSP: No Content Security
Policy, exposing the web app to XSS
and injection attacks.

• Missing HTTP Headers: Missing
X-Frame-Options, X-XSS-Protection,
and Strict-Transport-Security, which
exposes to multiple attack vectors.

• HttpOnly Flag Missing: Missing
HttpOnly flag on session cookies, in-
creasing risk of session hijacking.

Proposed Fixes:
• Implement CSP: Add a restrictive
Content Security Policy header to miti-
gate XSS.

• Set HttpOnly Flag: Ensure cookies
have the HttpOnly flag to protect ses-
sion data.

• Configure Secure Headers: Imple-
ment missing headers like X-Frame-
Options and Strict-Transport-Security.

Comparison of Nikto and Wapiti Results: Both tools identified critical vulnerabilities in
their respective areas. Nikto focused on server-side issues like outdated software and insecure
configurations, while Wapiti highlighted application-level flaws such as the lack of a Content
Security Policy and insecure cookies. Together, they provide a comprehensive assessment of
the server and web application security, showcasing the need for regular updates and secure
configuration practices. I have linked/referenced multiple sources describing the criticality of
these errors, but needless to say, it is crucial to have tools like Nikto and Wapiti to mitigate
this risk.

7 Conclusion

This report has explored the benefits and use cases for Nikto and Wapiti, and I hope that it is
evident how important tools like this will be in the future. Used in combination, a web-server
scanner and a web-application scanner are critical tools that allow us to find vulnerabilities a
human might not immediately catch. If we utilize tools like this in the correct way, (an isolated
environment, proper tool usage) we could make the web a much safer place, overall. Mitigating
risk on the web is the future going forward, and I hope I have done an adequate job showing
just how important it is.

9

Aidan Ingram
University of Kansas Web Vulnerability Scanner Assessment

References

[1] Wapiti web application vulnerability scanner documentation, 2024. Accessed: 2025-03-09.
URL: https://wapiti.sourceforge.io/.

[2] Dataspace Academy. Exploring the power of the nikto tool in web secu-
rity, 2024. Accessed: 2025-03-09. URL: https://dataspaceacademy.com/blog/

exploring-the-power-of-the-nikto-tool-in-web-security.

[3] K. G. Coffman and A. M. Odlyzko. Internet growth: Is there a ”moore’s law” for data
traffic?, 2001. Accessed: 2025-03-09. URL: https://www-users.cse.umn.edu/~odlyzko/
doc/internet.moore.pdf.

[4] The Apache Software Foundation. Apache http server 2.2.x vulnerabilities, 2025. Accessed:
2025-03-09. URL: https://httpd.apache.org/security/vulnerabilities_22.html.

[5] Hackviser. Nikto: Web server scanner, 2025. Accessed: 2025-03-09. URL: https:

//hackviser.com/tactics/tools/nikto#:~:text=Vulnerability%20Scanning%3A%

20Nikto%20is%20a,could%20be%20exploited%20by%20hackers.

[6] IbisWorld. Internet traffic volume, 2024. Accessed: 2025-03-09. URL: https://www.
ibisworld.com/us/bed/internet-traffic-volume/88089/.

[7] David Lodge. Nikto web scanner documentation, 2021. Accessed: 2025-03-09. URL:
https://github.com/sullo/nikto.

[8] Tomasz Andrzej Nidecki. Cookie hijacking: Understanding the risks and how to
prevent it, 2020. Accessed: 2025-03-09. URL: https://www.invicti.com/learn/

cookie-hijacking/.

[9] SecureFlag. Incorrect content security policy vulnerability, 2025. Accessed: 2025-
03-09. URL: https://knowledge-base.secureflag.com/vulnerabilities/security_
misconfiguration/incorrect_content_security_policy_vulnerability.html.

[10] Shivam Tahalani. Nikto penetration testing, 2020. Accessed: 2025-03-09. URL: https:
//hackerman007.medium.com/nikto-penetration-testing-2b06cbdd3e27.

10

https://wapiti.sourceforge.io/
https://dataspaceacademy.com/blog/exploring-the-power-of-the-nikto-tool-in-web-security
https://dataspaceacademy.com/blog/exploring-the-power-of-the-nikto-tool-in-web-security
https://www-users.cse.umn.edu/~odlyzko/doc/internet.moore.pdf
https://www-users.cse.umn.edu/~odlyzko/doc/internet.moore.pdf
https://httpd.apache.org/security/vulnerabilities_22.html
https://hackviser.com/tactics/tools/nikto#:~:text=Vulnerability%20Scanning%3A%20Nikto%20is%20a,could%20be%20exploited%20by%20hackers
https://hackviser.com/tactics/tools/nikto#:~:text=Vulnerability%20Scanning%3A%20Nikto%20is%20a,could%20be%20exploited%20by%20hackers
https://hackviser.com/tactics/tools/nikto#:~:text=Vulnerability%20Scanning%3A%20Nikto%20is%20a,could%20be%20exploited%20by%20hackers
https://www.ibisworld.com/us/bed/internet-traffic-volume/88089/
https://www.ibisworld.com/us/bed/internet-traffic-volume/88089/
https://github.com/sullo/nikto
https://www.invicti.com/learn/cookie-hijacking/
https://www.invicti.com/learn/cookie-hijacking/
https://knowledge-base.secureflag.com/vulnerabilities/security_misconfiguration/incorrect_content_security_policy_vulnerability.html
https://knowledge-base.secureflag.com/vulnerabilities/security_misconfiguration/incorrect_content_security_policy_vulnerability.html
https://hackerman007.medium.com/nikto-penetration-testing-2b06cbdd3e27
https://hackerman007.medium.com/nikto-penetration-testing-2b06cbdd3e27

	Introduction
	Web Security - Importance

	Motivation
	Tools and Methodology
	Nikto Web Scanner
	Wapiti Web Scanner
	Methodology

	Testing and Evaluation
	Nikto Testing Process
	Wapiti Testing Process
	Test Environment and Documentation

	Hands-On Demo (Figures/Data)
	Nikto Testing Results
	Verification of Findings
	Wapiti Testing Results
	Verification of Findings

	Results and Discussion
	Conclusion

